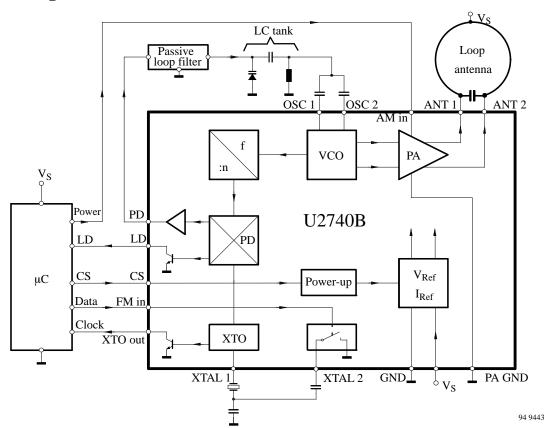
UHF AM/FM Transmitter

Description

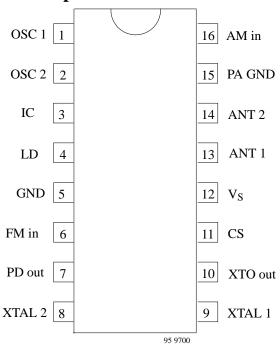
The U2740B is a one-chip multi-purpose UHF AM/FM transmitter designed for various applications in a wide frequency range. When supplying a Chip-Select signal (CS), the IC starts operation (Power-up, XTO, VCO, PD) and the VCO is then locked to 128*f(XTO). The locked status is indicated by the Lock-Detect (LD) output.

The digital data is supplied to either an AM- or FM-input-pin whereby the output power is set by use of the AM-input-pin. A differential output provides simple application with loop antennas. An output driver (XTO out) can be used for clocking the microcontrolller.

Features


- One-chip solution with few external components
- Wide frequency range (200 to 500 MHz)
- Single voltage supply (2.4 to 6 V) with power down feature
- Adjustable output power with differential output for loop antenna
- PLL lock-detect signal
- XTO output for μC clock
- ESD protection according to MIL-STD. 883

Applications


- Keyless entry (automotive, domestic,...)
- Alarm systems
- Remote control
- Communication systems

Block Diagram

Rev. A1: 23.03.1995

Pin Description

Pin	Symbol	Function
1	OSC 1	VCO tank
2	OSC 2	VCO tank
3	IC	Internally connected
4	LD	Lock-detect (open collector)
5	GND	Ground
6	FM in	FM modulation input
7	PD out	Phase detector output
8	XTAL 2	FM modulation capacitor
9	XTAL 1	XTAL
10	XTO out	XTO output (open collector)
11	CS	Chip-select (power-up)
12	V_{S}	Supply voltage
13	ANT 1	Differential output 1
14	ANT 2	Differential output 2
15	PA GND	Power amplifier ground
16	AM in	AM modulation input

Absolute Maximum Ratings

All voltages are referred to GND (Pin 5). $T_A = 25$ °C, unless otherwise specified.

	Parameters	Symbol	Min.	Max.	Unit
Supply voltage	Pin 12	V_{S}	2.4	6.2	V
Output current Lock-detect	$R4 = 2.7 \text{ k}\Omega$ connected to $V_S = 3 \text{ V}$ Pin 4	I 4		1	mA
Output current XTO out	$R10 = 2.7 \text{ k}\Omega$ connected to $V_S = 3 \text{ V}$ Pin 10	I10		1	mA
Input current AM in	$R16 = 2.7 \text{ k}\Omega$ connected to $V_S = 3 \text{ V}$ Pin 16	I16		0.5	mA
Junction temperature		T _{jmax}		125	°C
Storage temperature		T_{stor}	-40	125	°C

Operating Range

All voltages are referred to GND (Pin 5). $T_A = 25$ °C, unless otherwise specified.

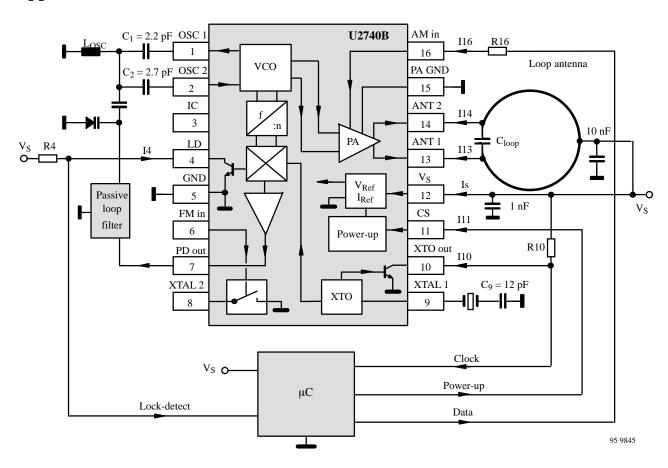
Parameters	Symbol	Min.	Тур.	Max.	Unit
Supply voltage Pin 12	V_{S}	2.4	3.0	6.2	V
Ambient temperature	T _{amb}	-40		85	°C

Maximum Thermal Resistance

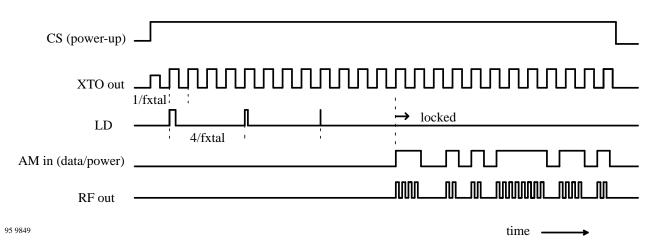
All voltages are referred to GND (Pin 5). $T_A = 25$ °C, unless otherwise specified.

Parameters	Symbol	Min.	Typ.	Max.	Unit
Thermal resistance	R_{thJA}		120		K/W

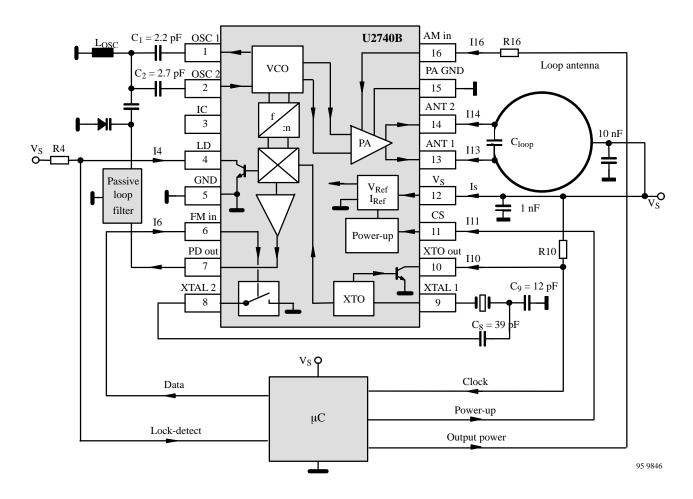
Electrical Characteristics

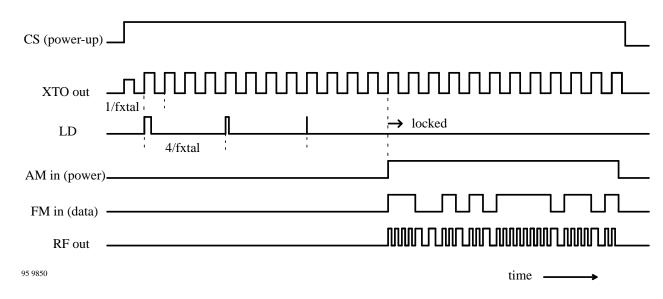

Test conditions (unless otherwise specified): $V_S = 3 \text{ V}$, $T_{amb} = 25 ^{\circ}\text{C}$

Parameters	Test Conditions / Pins		Symbol	Min.	Тур.	Max.	Unit
Supply current	V11 = 0, I16 = 0						
(power-down)	Pin 12		I _{S, OFF}		0.05	1	μΑ
Supply current (power-up)	V11 = 3 V, I16 = 0		I _{S, ON}		5.0		
	V11 = 3 V, I16 = 0).4 mA Pin 12	I _{S, ON,0.4}		9.5		mA
Power-down voltage	I16 = 0	Pin 11	V _{11,OFF}			0.4	V
Power-down current	V11 = 0, I16 = 0						
		Pin 11	I _{11, OFF}			0.1	μΑ
Power-up voltage	I16 = 0	Pin 11	V _{11,ON}	1.0			V
Power-up current	V11 = 3 V, I16 = 0						
		Pin 11	I _{11, ON}		40		μΑ
Output power	V11 = 3 V I16 = 0		Pout, OFF		-40		dBm
$(f_{VCO} = 433.92 \text{ MHz})$	V11 = 3 V I16 = 0 Pins 1	.4 mA 13 and 14	P _{out, ON}		0		dBm
Hold in range	Pins 1	13 and 14	Δf_{H}				MHz
Phase detector Output current		Pin 7	I_{PD}	-1		1	mA
Enable settling time	Pins 11/	13 and 14	T _{enable}				μs
Output frequency range	Pins 13 and 14		f _{VCO}	200		500	MHz
XTO frequency range	Pins 9 and 10		f _{XTO}	3		6	MHz
Input current AM in	R16 = 0 connected	l to V _S					
		Pin 16	I16		0.5		mA
Amplitude modulation bandwidth		Pin 16	BW _{AM}				kHz
Input current FM in	V6 = 3 V	Pin 6	I6		16		μΑ
Frequency modulation bandwidth		Pin 6	BW_{FM}				kHz
Output current	$R4 = 27 \text{ k}\Omega \text{ connection}$	ected to					
Lock-detect	V_{S}	Pin 4	I4 ¹⁾		0.1		mA
Output current XTO out	$R10 = 27 \text{ k}\Omega \text{ conr}$		10				
	V_{S}	Pin 10	I10 ¹⁾		0.1		mA

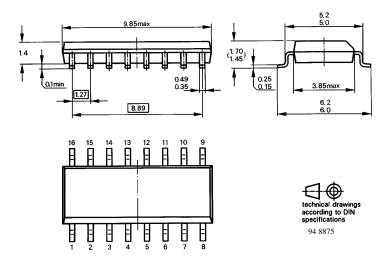

Note: $^{1)}$ depends on value of resistor connected to V_S

Rev. A1: 23.03.1995


Application Circuit (AM Modulation)


Principle of Operation (AM Modulation)

Application Circuit (FM Modulation)



Principle of Operation (FM Modulation)

Dimensions in mm

Package: SO 16

Rev. A1: 23.03.1995

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423